

矢量网络分析仪 _{使用说明}

南京普纳科技设备有限公司

目 录

第一章 概述1
1.1 安全使用注意事项1
1.2 普及型矢量网络分析仪 PNA37 系列1
1.3 主要性能2
1.4 PNA37 系列配置说明3
第二章 PNA37 系列使用说明4
2.1 主菜单操作示例4
1、测试菜单的设置5
2、测试菜单的保存和调取6
2.2 仪器的校准(《频域参数》下的校准)7
1、测试端口的反射校正(\$11、\$22 的校准)7
2、测试端口的传输校正(\$12、\$21 的校准)
2.3 负载测量的界面操作12
2.4 负载(放大器)的传输特性测试(测增益)
2.5 仪器的校准(《时域参数》下的校准)22
2.6 性能验证24
1. 插损读数验证24
2. 验证定向性26
3. 验证测相精度26
2.7 圆图的二种状态27
第三章 PNA 方向图测试设备的使用说明28
3.1 简介
3.2 布置示意图
3.3 测试中的几个概念
3.4 测试操作步骤
3.5 几点说明
第四章 垫圈法测材料电磁参数
第五章 平探头法测液体介电常数35
功率、dBm 与 50 Ω 线上电压对照表
反射不确定度-40dB 时测试正常示值范围37

第一章 概述

1.1 安全使用注意事项

· 仪器首先应接好地线 再将市电插头插入市电插座内(由于本仪器 市电进线装了滤波器,因此机壳必须加接地线,妥善接地,否则手触及仪 器时会有触电或麻电问题)。接地线时可将仪器后板上的螺钉松开,将地线 压紧即可(注意本仪器电源电缆三根线是完全分开的,严禁使用那种将地线 接在中线上的作法)。

· 切勿在仪器工作时插拔印制板卡与各种集成块 由于网络分析仪 知识面牵涉较广,除有经验的人员外请勿随意拆卸仪器或打开盖板以免造 成不必要的损坏。发现明显的毛病试图自行修理时,请注意烙铁不能带电 焊接(可将烙铁外壳接地线接到被焊接板的地线上)。

· 注意复位键 在发现不正常时应按复位键,为了避免偶然掉电(如 电源插座接触不良时)引起的不正常复位,请按复位键,使仪器正常后再开 始工作,必要时断电一分钟后再开机。

·注意连接器尺寸 测试过程中,射频连接器是允许插拔的,但请注 意在往测试端口接被测件时,需注意插芯伸出尺寸是否过长(如 N 型连接器 插针上的台阶应比端口缩进 5.3mm 以上),或是否偏心,否则用劲上紧的过 程中就将端口损坏了,根据实用经验,一般应用请加接保护接头或双阳以 保护测试端口。

· 仪器输入端口承受功率约 1mW,在附近有强信号发射的情况下(如雷达开机,电台发射),除非采用了特殊措施,否则不管仪器是否开机都不要将仪器直接接到天线上,以免强讯号由天线倒灌损坏仪器。

·本仪器比较轻便,可以拿到现场使用,但由于网络分析仪比较复杂, 对于环境要求还只能达到II类仪器要求,使用时以及运输时注意轻拿轻放, 以免造成不必要的损坏。

1.2 普及型矢量网络分析仪 PNA37 系列

本仪器能测单或两端口网络的各种参数,故名网络分析仪。只能测网

络各种参数的幅值特性者称为标量网络分析仪,既能测幅值又能测相位者 称为矢量网络分析仪;

P 为 Popular Portable Phasor 3 个字的缩写, NA 为 Network Analyzer 的缩写。

PNA37 系列的特色是:

- · 嵌入式操作系统, Windows 中文操作界面。
- · 10.4 吋高分辨率 LED 显示。
- · 触摸屏操作,中文菜单运行。
- · 多窗口、多曲线同时显示。
- · 体积小重量轻,台式机重约7.6Kg,为同档进口仪器的一半。

· 符合国情,频段设置与价格符合国情,价格约同档进口仪器的1/4。 PNA37 系列的技术特性如下:

- · 频率综合跳频,每点频率精度≤10⁻⁵,能点频工作。
- · 跳频速度约每秒 200 点,因此能测带长电缆的系统的指标。
- ・ 频段范围 100Hz~200MHz、30~3000MHz (3200MH'z), 30~
 6000MHz 可选。
- · 测试端口定向性: 3GHz≥25dB, 6GHz≥20dB 与频段有关。
- · 反射时域故障定位功能。
- · 复合介电常数测试功能(选配)。
- · 方向图测试功能(选配)。

1.3 主要性能

1、 扫频特性

100Hz~200MHz, 或 30~3000MHz, 或 30~6000MHz。

数字式跳频

频率精度≤10-5。

- 2、 测试动态范围 插损 80dB
 回损 50dB
- 3、精度与分辨率

小插损分辨率为 0.01dB,

不确定度在 50dB 内为±0.2dB±(dB 值)4%。

小反射分辨率为 0.002, 3200MHz 以下小反射不确定度约±0.01, 以上为±0.02。

相位分辨率为 0.01°, 不确定度 ± 5°/幅值。

- 4、等效定向性: 30~3200MHz 定向性≥40dB , 3200MHz 以上≥ 35dB。
- 5、 显示: 10.4 吋触摸显示屏。
- 6、 尺寸 (宽×高×深) mm: 410×230×270 重量: 约7.6Kg
- 7、 电源: 50Hz 交流, 220V, 0.3A, 保险丝 1.5A。

1.4 PNA37 系列配置说明

1. 附件

每套仪器配有一套附件。仪器面板插座与连接电缆皆为 N 型,附件 有 N 型与 SMA 型两种,可任选一种。除特殊标注外,特性阻抗一律 为 50Ω。

2. 选件

当配置的附件数量不够或品种不全时,可购置或定制其它选件。

- ·N型75Ω套件
- ·方向图测试转台与自动记录功能。
- · 高校天线实验附件箱
- ·高校射频实验附件箱
- · 织物电磁辐射屏蔽效能分析
- ·流体、半流体等物质复合相对介电常数测试功能
- ·平面固体、粉末等形态物质复介电常数、复电导率测试功能

第二章 PNA37 系列使用说明

2.1 主菜单操作示例

开机后进入 Windows XP 系统,自动进入 "PNA 矢量网络分析仪"的操作 界面,如图 2-1,此页面主要是设置测试参数、选择测试功能、校准操作、状 态指示及操作进度显示。注: []]内为按键名称,《》内为屏幕字符,按键呈淡灰 色时为当前状态不可操作。

图 2-1

在左上方菜单栏的〖操作〗菜单下,有《选项》(矢量网路分析仪开机后, 是否直接进入《矢量网路分析仪》界面的选项)和《精测》(精测状态的选择), 如图 2-2、图 2-3。

图 2-3

开机预热 10~20 分钟以上,测量更精确。按仪器面板左上角的 《复位》 按键,才能进入测试菜单设置的操作。

1、测试菜单的设置

示例:介绍

测试一个使用频率为 800~1000MHz 的天线的驻波比时, 每隔 10MHz 测一点, 共测 21 点, 是如何在主菜单上设置操作的(用触摸屏或鼠标操作)。

在"测量参数设置"的〖网络分析〗标签下,选择频域参数测试状态下的 《等间隔》,再点击选中《起始频率》数字框,利用左下键盘区的〖清空〗按键 清空原有数据,用数字键输入800,再选中《频率间隔》数字框,用〖清空〗 按键清空原有数据,输入10,再选《终止频率》数字框,用〖清空〗按键清空 原有数据,输入1000,点击〖计算〗按键,自动算出《频率点数》21,同时原 来呈淡灰色的〖设定〗按键,变亮显示,转为可执行按键。然后选择测试选项《S11》、

《S12》、《S22》、《S21》,本例为全选(用户可根据自己的需要选择这 4S 参数测试 选项),如图 2-4。点击屏幕上的【设定】进入《仪器校准》操作界面。

如不改变测试频率菜单,用原有的频率数据时,按【设定】直接进入仪器 校准操作界面(【设定】键为淡灰色时,按【计算】按键,可使【设定】键变亮显

5

示,转为可执行按键)。

图 2-4

点频设置:【起始频率】= 【终止频率】或【频率间隔】=0即为**点频**。

2、测试菜单的保存和调取

测试参数确定后可以点〖保存〗将此测试方案保存到仪器中;而〖已存方 案〗则能调出保存过的测试方案,如图 2-5、图 2-6 和图 2-7 分别为频域、时域 方向图测试的历史方案(已保存方案)。

图 2-5

图 2-7

2.2 仪器的校准(《频域参数》下的校准)

1、测试端口的反射校正(S11、S22的校准)

进入校准操作画面,图 2-8 为《仪器校准》操作界面,显示了设定的频率 参数,显示参数设置完毕,开始校准…,待操作按键【开路校准】高亮粗体字 显示,在仪器的**测试端口1(\$11的校准)**上接连接电缆,在电缆的另一端接上开 路器(如图 2-9),点击【开路校准】,《进度》指示条显示进度,完成后《操作成

功》状态呈现绿色,显示 S11 开路校准完成。(如图 2-10)

图 2-8

图 2-9 测试的开路校准

开路校准完成后,自动转入〖短路校准〗高亮粗体字显示,拔下电缆端口 上的开路器,换上短路器,点击〖短路校准〗,《进度》条再次显示短路校准进度, 《执行状态》为红色,完成后《操作成功》状态呈现绿色,如图 2-11。

短路校准完后,自动转入〖校零〗高亮粗字体显示,拔下连接电缆端口的 短路器,换上精密负载,点击〖校零〗,《进度》条显示校零进度,如图 2-12。端 口1的反射校正完成。

图 2-12

图 2-13

对端口2重复以上的三项校准(S22的校准),完成后如图 2-13。

端口1和端口2的三项校准完成后,拔下二电缆上的精密负载。

注意:如果是单独选择的 \$11 和 \$22 校准测试的,此时就能接被侧件,但同一被侧件不能直连其中同时看 \$11 和 \$22 (仪器二端口匹配有误差),可以在端口 1 和端口 2,同时看二个被侧件的反射参数。

2、测试端口的传输校正(S12、S21 的校准)

接上例继续校准,用一双阴连接器把二电缆连接起来,点击〖直通〗,《进度》 条显示直通校准进度,《执行状态》为红色,完成后《操作成功》状态呈现绿色。显 示直通校准完毕!如图 2-14。

图 2-14

再断开双阴,二电缆头分别再接上精密负载,一接阳负载、一接阴负

载,按〖泄漏〗按键,《进度》条显示泄漏校准进度,完成后《操作成功》状态呈现绿色,〖测量〗按键变亮显示,转为可执行按键。如图 2-15。

图 2-15

卸下二个精密负载,接上被测件(此例接入的是10dB衰减器),点击 【测量】,屏幕跳转到测量显示画面。如图2-16。

图 2-16

注意:测要求精度高的小插损(30dB以下)时,如果只选择 \$12、\$21 的 校准,就需要接连二个 10dB 衰减器进行直通校准。

校准时也可以根据需要只进行【开路校准】]或【短路校准】],点击【测量】 后直接进入测试界面。

2.3 负载测量的界面操作

【选中图形】下拉列表,在1~4中选中你所要观察的图形,选中后该画面 **左下角的带数字指示变为嫩绿色**(如图 2-17)。也可以直接点触你要观察的图 形,进入该图形。

【曲线切换】下拉列表,可将当前选中的画面中的曲线,切换为需要显示 的参数图形,如:【幅度(dB)】(插损或回损)、【幅度(归一值)】(反射系数)、 【相位(角度)】、【极坐标(dB)】、【极坐标(归一值)】、【Smith】(阻抗圆图)、 【驻波比】、【时域图(反射)】、【时域图(传输)】、【群时延】、【液体介电常数】、【介 电常数与导磁率】、【双面复铜版介电常数】。选中你所要显示的参数即可。图 2-18。 拖动所选图形中的红色直线、或点击右下方的 【<】、【>】号移动红色直线, 可改变当前频率点的频率值,所选图形(小图)下方显示的 fre:为当前频率值, 上方为频率对应的参数。本例中所选图形 2 中的红色光标线对应的频率: fre 为 920MHz,对应的参数 \$11 SWR 1.080, \$22 SWR 1.066。如图 2-19。

图 2-19

此时点击 【标记】可将当前选择的画面中的当前频率点,选择后标记在图 形上。此处选择的是该频点的 \$11 参数和 \$22 参数。标记后关闭该选项。如图 2-20。最高可标出 12 个参数。

点击〖清除〗按键,弹出对话框,有〖下拉框〗、〖删除〗、〖清空〗、〖确定〗 四种选择,点击下拉箭头,选中要删除的频点,点〖删除〗,该频点从标记显示 处被删除,点击 【清空】 标记的所有频率点都将被删除。点击 【关闭】 退出 【清 除】。如图 2-21。

图 2-21

菜单栏上的 [[S11]]、[[S21]]、[[S21]]、[[S22]] 选项,可以隐藏和显示所选图形 中相对应的曲线,图形 2 中只显示了 S11、S22 二根曲线;图形 1 (绿指示的当前 选中图形) 中则显示了 S11、S21、S12、S22 四根曲线。图 2-22。

工具栏依次是【常规状态】,【放大】,【横坐标放大】, 【纵坐标放大】,【缩小】,【还原】,【拖动】按键。这些工具可以对选中的显示图 形进行放大、缩小、移动、还原等操作。

图 2-23

【放大】、【缩小】同时放大或缩小纵横坐标。

【横坐标放大】,【纵坐标放大】工具,实际上是局部放大工具,即它们选定 的区域显示,区域外超出显示坐标不可见。用这二个工具时,下限不能超过纵坐标 或横坐标,否则操作无效。重新使用。

【还原】工具,使被放大后的图形,回到初始状态。

〖移动〗只能在放大的基础上操作,且在 Smith 圆图下使用。如图 2-24。

图 2-24

缩放工具下面的〖图表数〗下拉列表,有单图表、双图表、三图表、四图

表,选择后显示的图形数不同。如图 2-25、图 2-26、图 2-27 分别为三画面、 二画面、单画面的显示图。

图-25

图 2-26

右侧菜单下有 5 个操作按键 〖暂停〗, 〖运算参数〗, 〖校准〗, 〖高级〗, 〖退出〗。 如图 2-27 右侧。

【暂停】不按时,显示的图形和数据是在不停地刷新状态,按下【暂停】键, 显示图形及数据停止不变(即暂停刷新),再次按下重新回到刷新状态。

【运算参数】点击后转入下一级《运算参数》菜单,共有五个选项【移动参考 面】,【阻抗单位】,【波速比】,【衰减补偿】,【返回】。图 2-28 右侧。

图 2-28

参考面移动:

参考面即反射校准后的界面。有时测试时,需要在其后加接一段,才 能和被测件相连,加接后的位置又不能进行三项校准(开路、短路、校零), 只能利用移参功能,使得加接后的端面,在 smith 圆图上仍然能使开路时 在∞点、短路时0点、上标阻时在匹配点(圆图的圆心)。

若已知所需移动的电长度可按【移动参考面】键,弹出对话框《S11移 动参考面+0.000m》在《+0.000》框键入所需数值,点击【确定】键即可。 如不知需要移动的电长度,可由【曲线切换】下拉列表中的【时域图】参数 下测量得到,或用尺量长度后计算波速比算得到。图 2-29。

阻抗单位的归一化:

用于 smith 圆图,点击 【阻抗单位】 按键,如图 2-30。可选择被测件的阻抗 单位(即被测件的阻抗系统)。

图 2-30

如测试 75Ω系统, 仪器校准时不仅校准件要用 75Ω的, 此处的阻抗单位要选择 75Ω, 这样阻抗圆图的匹配点(圆心)的值才能为 75Ω, **测试时读出的值才是 75Ω 系统的值。**

"波速比"和"衰减系数"主要用于时域显示调整,主要在《时域参数》 测试时使用。

波速比:

在不加支持片(或充填介质)的同轴线段中,同轴线段的机械长度(几何

长度)与电长度是一致的,在有支持片或充填介质的情况下两者是不同的,机 械长度与电长度之比称为**波速比**(也有称缩波系数,或缩短系数),一般在0.66 到1之间,电长度显得长些,而实际机械长度显得短些。实际上要求的是电长 度,矢量网络分析仪正好能测电长度。

如某一电缆的电长度是 2.16m, 该电缆的波速比为 0.7, 这电缆的机械长 度就是 1.52m, 输入波速比后, 图形左上方给出的 MXA: S22 的最大反射 0.96 位于距离的 2.16m(电长度)处, 输入波速比 0.7 点击 〖确定〗, 2.16m 电长度 显示就成为 1.52m 的机械长度。如图 2-31。

图 2-31

衰减补偿:

图 2-32

在时域状态下应用,此功能是在测电缆等传输线时,因远端经长距离衰减,看 不到具体状态后,对远端反射的补偿放大。点击〖衰减补偿〗输入相应的衰减系数 值,点击确定,远端反射就非常明显了。如图 2-32、33,对一根电长度为 65.73 米 的电缆的远端进行 120 的补偿。

点击 【返回】 退出运算参数, 返回到主菜单。

【校准】按键的下一级菜单,有【S11校准】,【S22校准】,【S11/S22校准】, 【返回】四个按键,可在测试状态下(或重新确定测试参考面时),再次对参考面端 口进行校准。如图 2-33。点击【返回】退出校准子菜单,返回主菜单。

图 2-33

【高级】: 点击后进入《高级功能》子菜单,有【保存】、【最大/最小值,3dB 带宽】、【合格线】、【等反射圆】、【返回】五个按键。如图 2-34。

点击〖保存〗,弹出《保存测量结果图形与数据》对话框,输入文件名,选择保 存地址后,按《确定》可保存测试图形和数据。如图 2-35。

图 2-36

【最大/最小值, 3dB 带宽】在相位和 Smith 圆图下不显示, 选中后立即在相 对应图形的左上角, 显示最大值、最小值和 3dB 的带宽值。如图 2-36。

点击 《合格线》 弹出设置界面,输入上、下限点击确定,红合格线确定,点击 《取消》退出设置。如图 2-37。

点击〖等反射圆〗弹出等反射圆合格线列表,设置后点击确定完成设置,图上 显示所设图形。点击《取消》退出设置。如图 2-38。

点击 【返回】, 进入主菜单

在主菜单下点击 【退出】,退出测量状态,进入《仪器校准》界面,再按测量可 以重新返回测试状态。如按【复位】则回到《测量参数设置》界面。

2.4 负载(放大器)的传输特性测试(测增益)

请注意放大器的最大输出问题,由于本机输入端口灵敏度较高,而内 部又无程控衰减器,承受功率约 1mW,测增益时必需外接衰减器以抵消放 大器的增益,产生插损,按插损测出后,再计算放大器的增益。

2.5 仪器的校准(《时域参数》下的校准)

进入时域状态

刚开机时或复位后,《测量参数设置》界面,选中时域参数(频域参数前为

空)。选择被测电缆的长度(距离),测试距离应选为待测电缆几何长度的 1.5 倍以上,即〖测电长度〗的距离。这里测 45.37m 电缆,待测电长度距 离选 120m。如图 2-39。本例中还是全部勾选 4 个 S 参数的测量。

图 2-39

点击 【设定】,进入《仪器校准》界面,界面上显示测量的最大电长度、 测量的通道,如图 2-40。

图 2-40

对仪器的二个端口进行校准。详见 2.2 节仪器的校准下的: 1、测试端口的 反射校正(S11、S22的校准); 2、测试端口的传输校正(S12、S21的校准)。 校准完成后,接上被测件,点击 [[测量]],屏幕跳转到测量显示画面,如图 2-41。

画面上各功能键的操作详见 2.3 节负载测量的界面操作。图 2-38,图形 1~ 4 是放大纵坐标、给出了反射最大值的 64.82m (电长度)处,已知此电缆的波 速比为 0.7,《参数校准》的波速比输入 0.7 后,我们就能看到电缆的机械长度 为 45.37m 了,实测电缆机械长度 45.37 米。如图 2-42。

图 2-42

2.6 性能验证

1. 插损读数验证

在端口1与端口2间接入一个标准可变衰减器。 标准可变衰减器置10dB处校直通。

设置扫频方案 BF(起始频率)设为仪器规定考核的最低频率,设置 ⊿F(频率间隔)使得 N 在 21 点, EF(终止频率)即可达到仪器最高频率 左右。《S21》和《S12》前打钩,选《频域参数》。

按〖设定〗键,进入仪器校准界面,直通校准,校准完成后,〖测量〗键成 为可执行键,点击〖测量〗进入测量显示画面,单图形显示,此时测试值应为 一条在 0dB 附近的直线,一般起伏约小于 0.2dB (如图 2-43),否则说明预热 时间不够,或有其他问题,必要时按〖退出〗、〖复位〗键再执行一次后才进行测 试:搬动衰减器,测 0-50dB 衰减数值(直接读数 10-60dB),其允差如下表:

误差dB ±0.3 ±0.6 ±0.8 ±1.1 ±1.5 ±2.1 ±5

标准可变衰减器置0 dB,校直通。然后断开输入电缆,显示器上数字 即动态范围,应≥70dB。如图 2-44。

图 2-45

2. 验证定向性

扫频方案同上,按反射测试步骤进行;选择 S11 测试。

端口1进行三项校准(开路、短路、校零),完成后,将标准负载接在 端口1,测试点的数值即定义为定向性:定向性≥ 35dB。如图 2-46。

图 2-46

注意: 定向性这个指标是不易达到的,它是靠反射电桥的定向性与负载 回损两者来保证的,若此时测试值不太理想,则总有一样性能降低了,判断 谁好谁坏必须有另一套好的来作比较,否则只能送回生产单位返修。

3. 验证测相精度

可以用传输测也可用反射测,这里介绍用反射测,因为可调短路线比 较容易获得。

30~3000MHz 仪器:

按回损测试步骤进行连接(只测 \$11),并将扫频方案设为 2500MHz 点频;进入三项校准状态,端口1接上可调短路线,短路线的游标置 60mm 处,按〖开路校准〗键校开路。再将短路线置0处,按〖短路校准〗键;屏 幕〖校零〗高亮显示,直接点击〖测量〗。

移动短路线,记下测试值与下表理论值的误差,最大误差≤±10°; 短路线 mm 0 5 10 15 20 25 30 35 40 45 50 55 理论值(度) 180 120 150 90 60 30 0 330 300 270 240 210 端口 2 同样操作验证。

26

2.7 圆图的二种状态

仪器按测反射连接,校准开路时用开路器,校短路时接短路器校准,校准完成后得到阻抗圆图 (如图 2-47), r = 1 即是 z = $50\Omega - ix$ 。

当校准开路时接上短路器,校准短路时接上开路器校准,校准后所显示的圆图,为导纳状态(如图 2-48)。常用于π型等网络的阻抗调配。

图 2-47 圆图在阻抗状态

图 2-48 圆图在导纳状态

第三章 PNA 方向图测试设备的使用说明

3.1 简介

天线在不同方向的收发能力是不同的,在一个剖面上,比如在水平面 上用平面图表示出来,这就是水平方向图,也称波瓣图;还有叫场型的、 覆盖区的以及服务范围的。

水平方向图是最常用的,也可在垂直面内剖开即为垂直方向图。

对于常用中等增益天线,如蜂窝通讯基站天线等,可用本装置与 PNA 配合,以便对方向图自动记录与打印。由于采用的是一度一记,因此只适 宜测波束宽度大于 10°的方向图,否则记录将太不光滑。

测试时可显视直方图及极坐标显示,常用对数坐标。

目前这种设备只能与 PNA 台式矢量网络分析仪相配。

1、设备清单

转台 1个

- 2、转台性能
 - · 承载能力约 30 公斤。转速每分钟 360° (转速可调)
 - ・ 串口电缆将转台与 PNA 仪器联通后,开机转动转台。能在 360°内 反复左右旋转
- 3.2 布置示意图

图 3-1

· 将转台电缆一头接在仪器上,一头接在转台上(注意:此线千万不能 带电插拔,一定要接好后方可开机,关机后方可拔下)。

· 室内近距离测试时,可不加放大器。

· 将连接电缆一头接在仪器上, 一头接在发射天线上。

· 将另一根连接电缆一头接在仪器的端口 2 上,一头接在转台上的接受 天线上。如图 3-1、3-2。

图 3-2

3.3 测试中的几个概念

- · 天线转一圈 (270°→0°→90°→180°→270°)
- · 转台启动位置(通电旋转时的第一点): 对于天线来讲是0°(方向 图上的位置)。
- · 转台旋转记录的起始位置:对于天线为 270° (方向图上的位置)
- · 天线场强最大值位置:为0°点(方向图上的位置)附近。
- · 方向图起始记录点:为 270° (方向图上的位置)。
- 记录点一般为360°(转台旋转一圈),即记录时由(从方向图上看)
 270°经过0°、90°、180°,再到270°一共361点。这样记的目的是为了得到完整的主瓣与尾瓣。
- ·发射天线与待测天线可以是任何低增益的天线,只要**极化相同**即可。

3.4 测试操作步骤

- · 仪器预热 10 分钟后,将仪器菜单界面选为 【方向图测试】。
- · 在【方向图测试】菜单下将测试频率设置好,如: 2450MHz。
- · 起始记录点, 定为 270°。如图 3-3。
- · 按【计算】,再点击【设定】进入《仪器校准》状态。

图 3-3

- · 安装好天线后,尽量使接受天线的最大辐射点与发射天线相对,这也 是转台的启动位,方向图上的0°位置。
- · 按下《找 MAX》按钮,转台在0°(转台的启动位)左右各 30°的范 围内转动,找出天线辐射的最大值并自动校准。(注:如不知道天线的 场强最大方向,也是这样操作,只是画出来的方向图,强场最大方向不 在0°而已)。

- · 点击《测量》,转台自动转到 270°位置(起始记录点,方向图上的位置),开始记点转动。
- · 一圈转完,软件自动绘出方向图,转台自动回转到0°点。
- 如要更换不同的天线,天线辐射的最大点,不在现在的0°位置附近时,请输入某一度数按正反转按钮,调整转台位置,使天线辐射的最大点,与发射天线相对应的位置,这点为新的0°位置(这种做法是想把被测天线的场强最大值,放在方向图的0°位上)。
- 软件自动绘出方向图后,曲线切换下有方向图的 dB 曲线、方向图的归一曲线、幅度的 dB 曲线、幅度的归一曲线和相位可选。界面的右侧有 3dB 带宽标注按键,保存按键等。

3.5 几点说明

水平极化 水平放置的半波振子能辐射或接收水平极化波。

垂直极化 垂直放置的半波振子能辐射或接收垂直极化波。

圆极化 两个互相垂直放置的半波振子,馈电幅度相等而相位相差 90°时,能辐射或接收圆极化波,当上面三个条件有一个不满足时,即退化为 椭圆极化波。极端情况下,短轴为零即成为线极化波;线极化波可能是斜的, 但一般常用水平与垂直两种。

轴比 椭圆极化波的长短轴之比即轴比;圆极化时的轴比为1,用 dB 表示时为 0dB,一般圆极化天线的轴比要求在±3dB 以内。

轴比的测试 类似方向图测试布置,一边是待测天线,一边是线极化天

线。一个发,一个收,一个固定,一个能旋转。至于谁发谁收? 谁固定谁旋转? 当视设备是否方便而定,没有必须遵守的规定。在指定方向,旋转(在与两天 线的连接线垂直的面内)带来的信号起伏即为轴比。

交叉极化 当只需某一种极化时,则另一种极化即为交叉极化。如水平 极化天线因平衡不佳而出现垂直极化分量时,此分量即交叉极化;交叉极化应 比主极化低 20dB 以上。

圆极化旋向的判别 用两只旋向相反的螺线天线,按测方向图放置,测 其与待测天线之间的空间传播插损,其旋向当与插损小的螺线天线的旋向相同。 螺线天线当在五圈以上,周长约为波长,间距约四分之一波长即可。

圆极化天线的方向图 圆极化天线的方向图不象线天线那样简单,需要 约定测试方法,否则方向图将不止一两张。最简单的还是用圆极化发,圆极化 收,只测一张方向图。

第四章 垫圈法测材料电磁参数

1、思路

将待测材料做成垫圈状,置于同轴线内形成一段有耗同轴线;先后测出其 末端开路时的输入阻抗 Z_{ino}与短路时的输入阻抗 Z_{ins},即可算出其复介电常数与 复导磁率。电磁损耗大的材料。

2、试样准备

・ 试样尺寸应为外徑Ф7 内徑Ф3 的垫圈,厚度可在 0.5、1、2、3、4、5
 中进行选择。

· 厚度 0.5 的垫圈,可用附件盒中的冲头冲制。

可用附件盒中的模具制作试样。模具由底座、内芯、Φ3 垫圈组成;口
 朝上,放入所需厚度的垫圈,即可在垫圈与内芯间充填待测材料做成试样。可
 在底座反面小孔内将试样顶出。即可连垫圈一起进行测试,只要试样时,可将
 附件盒中的脱模垫置模具中,再将垫圈连试样置模具中,即可顶出试样。

3、测试准备

· 仪器置测 \$11 状态,按需要设置扫频方案。

· 按测回损状态连接,并接上附件盒中的测试座。再将口上的螺套取下备 用。

 ・ 在测试座端口内导体口塞入开路塞0(与口平,不得冒出),放上开路套, 用螺套将开路套压紧后,进行开路校正。仪器屏幕光点应集中在 R=∞处。

・ 取下螺套,去掉开路套与开路塞,在测试座端口接上短路塞0,用螺套
 压紧后,进行短路校正。仪器屏幕光点应集中在 R=0 处。

· 取下整体测试座,接上精密负载校零,拔下负载,接上测试座。 4、测试试样的介电常数

取下短路塞,在测试座端口塞入与试样同厚度的开路塞,将试样套在上面,并套上相应的垫圈与附件盒中的定位套,再放上开路套,用螺套压紧后,进行测试。

· 在 PC 机界面上点击介电常数即可显出ε' 与ε"。
 5、测试试样的导磁率

33

· 取下在测试座端口的开路套与开路塞,接上相应厚度的短路塞,用螺套 压紧后,进行测试。

・ 在 PC 机界面上点击导磁率即可显出 μ' 与 μ' 。
 6、附注:

· 4、5两项次序不拘。

· 零件较多,容易搞不清,用过后立即放回原处。

·测完后,可设文件名,进行保存。同名两个文件,一为曲线,一为数据。

· 本法采用的是经过简化后的实用公式,虽不严格,但很实用。

· 实际测试中,严格的开路是很难实现的,除非在点频的情况下,另做四 分之一波长的短路线。

· 本法中假定垫圈厚度 t很薄,只有这样才能满足 $thyt \cong \gamma t, cth \gamma t \cong 1/\gamma t$ 。

在允许误差 10%的情况下,测介电常数时 $t \leq 26/(f\sqrt{\varepsilon_r})$,f 的单位为 GHz。

在允许误差 10%的情况下,并在 $\mu' = \mu$ "情况下,测导磁率时 $t \leq 18/f$ 。

第五章 平探头法测液体介电常数

开启矢量网络分析仪,预热10分钟。

矢量网络分析仪设置好频率, 在测 S11 状态, 测试电缆的端口接上探头, 在探头口开路的情况下校开路(不碰触任何东西)、用配发的短路片,置探头上, 用夹子夹好, 校短路。

点击测量,进入测试状态后,〖曲线切换〗下拉列表选〖液体介电常数〗, 弹出〖液体介电常数〗界面,选《自动校准K值》或者手动校准K值,《自动校准 K值》下选《水》或《聚四氟乙烯》,点击〖确定〗,测试探头置于校准用的标准 液体中,液体不要漫过探头背面,且探头正面不得有气泡。

点击〖校准〗取出测试探头擦净后,把探头放入待测试样,点击〖测量〗 即可显出ε´与ε"曲线。更换新的测试试样前需再次擦净探头,再次点击〖测量〗 方可显示新试样的ε´与ε"曲线。

需改变量程显示时,在选择好适合的量程后,点击〖测量〗,测试曲线超过 量程时会饱和,形成突跳假象,请换大一级的量程。移动〖<〗,〖>〗可看到每 个频率点对应的ε[′]与ε″的值。

测试图形与数据的保存:点击〖保存〗,在〖文件名称〗里,输入您所要保 存图形与数据的名称,系统提示数据和文件保存成功,点击〖OK〗。图形与数据 文件即被保存。

功率、dBm 与 50 Ω线上电压对照表

功 率	dBm	电压(有效值)	电压(峰峰值)
1000000W=1MW	90	7.07 KV	20 KV
100000W=100KW	80	2.236 KV	6.325 KV
10000W=10KW	70	0.707 KV	2 KV
1000W=1KW	60	223.6 V	632.5 V
100W	50	70.7 V	200 V
10W	40	22.36 V	63.25 V
1W	30	7.07 V	20 V
100mW=10 ⁻¹ W	20	2.236 V	6.325 V
10MW=10-2W	10	0.707 V	2 V
1mW=10-3W	0	223.6 mV	632.46 mV
$100\mu W=10^{-4}W$	-10	70.7 mV	200 mV
$10\mu W=10^{-5}W$	-20	22.36 mV	63.25 mV
1µW=10-6W	-30	7.07 mV	20 mV
100nW=10 ⁻⁷ W	-40	2.236 mV	6.325 mV
10nW=10-8W	-50	0.707 mV	2 mV
1nW=10-9W	-60	223.6µV	632.46 μV
100pW=10-10W	-70	70.7µV	200 µV
10pW=10-11W	-80	22.36µV	63.25 μV
1pW=10 ⁻¹² W	-90	7.07 μV	$20 \ \mu V$
100fW=10-13W	-100	2.236 µV	6.325 μV
10fW=10 ⁻¹⁴ W	-110	0.707 μV	2 µV
1fW=10-15W	-120	223.6 nV	632.46 nV
100aW=10-16W	-130	70.7 nV	200 nV
10aW=10 ⁻¹⁷ W	-140	22.36 nV	63.25 nV
1aW=10 ⁻¹⁸ W	-150	7.07 nV	20 nV

驻波比 标称值	回 损 标称值	驻波比 示值范围	回 损 示值范围 dB	反射系数 示值范围
1.00	œ	$1.000 {\sim} 1.020$	40.00~96.00	$0.0000{\sim}0.0100$
1.01	46.06	$1.000 {\sim} 1.030$	36.49~96.00	0.0000~0.0149
1.02	40.08	$1.000 {\sim} 1.040$	34.02~96.00	0.0000~0.0199
1.03	36.60	$1.010 {\sim} 1.050$	32.11~46.41	$0.0047 {\sim} 0.0247$
1.04	34.15	$1.019 {\sim} 1.061$	30.57~40.34	0.0096~0.0296
1.05	32.25	1.029~1.071	29.27~36.83	$0.0143 \! \sim \! 0.0343$
1.06	30.71	$1.038{\sim}1.081$	28.15~34.36	0.0191~0.0391
1.07	29.41	$1.048 {\sim} 1.091$	27.16~32.46	$0.0238{\sim}0.0438$
1.08	28.30	$1.058 {\sim} 1.101$	26.29~30.91	$0.0284{\sim}0.0484$
1.09	27.31	$1.068 {\sim} 1.112$	25.50~29.61	$0.0330{\sim}0.0530$
1.10	26.44	$1.078 {\sim} 1.122$	24.78~28.49	0.0376~0.0576
1.11	25.65	$1.087 {\sim} 1.132$	24.13~27.50	$0.0421 {\sim} 0.0621$
1.12	24.94	1.097~1.142	$23.53 \sim 26.63$	$0.0466{\sim}0.0666$
1.13	24.49	1.107~1.152	22.97~25.84	$0.0510{\sim}0.0710$
1.14	23.68	1.117~1.163	22.45~25.12	$0.0554{\sim}0.0754$
1.15	23.13	1.127~1.173	21.96~24.47	$0.0597{\sim}0.0797$
1.16	22.60	1.136~1.183	$21.50 \sim 23.86$	$0.0640 {\sim} 0.0840$
1.18	21.66	1.156~1.204	$20.67 \sim 22.78$	$0.0725 {\sim} 0.0925$
1.20	20.82	1.176~1.224	19.92~21.84	0.0809~0.1009
1.22	20.08	1.195~1.244	19.24~21.00	0.0890~0.1090
1.25	19.08	1.224~1.275	18.33~19.90	0.1011~0.1211
1.30	17.69	$1.273 \sim 1.326$	17.05~18.38	0.1204~0.1404
1.35	16.54	$1.322 \sim 1.377$	15.97~17.14	0.1389~0.1589
1.40	15.56	$1.371 \sim 1.429$	15.05~16.10	0.1566~0.1766
1.45	14.72	$1.420 \sim 1.480$	14.25~15.20	0.1736~0.1936
1.50	13.98	1.469~1.531	13.55~14.42	0.1900~0.2100
1.60	12.73	1.566~1.634	12.36~13.12	$0.2207 {\sim} 0.2407$
1.70	11.72	$1.664 \sim 1.736$	11.39~12.06	$0.2492 {\sim} 0.2692$
1.80	10.88	$1.761 \sim 1.839$	10.58~11.19	0.2757~0.2957
1.90	10.16	$1.858 {\sim} 1.942$	9.88~10.44	$0.3003 \! \sim \! 0.3203$
2.00	9.54	1.955~2.045	$9.28 \sim 9.80$	0.3233~0.3433

注:1. 本表为通用表格,适合于定向耦合器,反射电桥,驻波电桥,魔T等定向性为40dB的测试器 件估计测试示值之用,在此范围内皆属正常。

2. 反射系数只在打印《反射》时出现,屏幕上无此读数。

3. 回损最大值为 96, 实际上回损大于 50dB 已经没有实际意义了。

南京普纳科技设备有限公司

- 地址:南京市江东北路 301 号滨江广场 14 层
- 邮编: 210036
- 电话: 025-86200301、86225090、86200340、86200343
- 传真: 025-86200323
- 网址: www.pna.com.cn